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Abstract

Biofilms are structured microbial communities embedded in a self-produced extracellular matrix. This lifestyle provides
significant protection against environmental stressors such as desiccation, chemical treatments and even ionizing radiation.
Radiation, while a well-established antibacterial strategy, can be less effective in biofilms. Biofilm superior resilience is
due to several advantages such as the shielding provided by the matrix, the metabolic heterogeneity and adaptive stress
responses of biofilm-associated cells. To address this challenge, researchers are increasingly employing combination strate-
gies in antibiofilm treatment. Radiosensitizers, compounds originally developed to enhance the efficacy of radiation ther-
apy in cancer treatment, have also garnered attention for their potential in antimicrobial applications. These compounds
act by amplifying the effects of radiation, often through mechanisms such as increased oxidative stress or inhibition of
DNA repair pathways. However, research on radiosensitizers in bacterial systems has focused on planktonic cultures,
with limited studies exploring their effects on biofilms. Given the complexity and unique characteristics of biofilms, their
response to radiosensitization remains poorly understood and requires further investigation. The use of radiosensitizers in
conjunction with radiation presents a promising approach to overcome the inherent resilience of biofilms. By enhancing
the susceptibility of biofilm-associated bacteria to radiation and simultaneously disrupting their protective structures, such
approaches could lead to more effective and comprehensive solutions. Understanding the nuanced responses of biofilms
to these combined treatments is essential for advancing both medical and environmental applications and addressing the
challenge of biofilm persistence.
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Introduction

Free-floating active bacteria are a relatively easy target for
sanitation products, as these cells are directly accessible to
antimicrobials. However, bacteria can switch to alternative
lifestyles known to improve their survival chances such as
dormancy, sporulation and biofilm formation. Biofilms rep-
resent the most common type of microbial lifestyle where
cells attach to a surface or to each other and produce a mix
of polymeric substances that build up and form a “micro-
bial nest”. There is evidence that the capacity of microbes to
produce biofilms appeared with early microbial life billions
of years ago (Westall et al. 2011) and this feature is shared
between archaea, bacteria and fungi. Biofilms are dynamic
biological structures with variable interacting parameters
(Stewart and Franklin 2008). In addition, natural biofilms
are often microcosms where various species from different
phylogenetic branches and kingdoms co-exist (Sadiq et al.
2022; Yang et al. 2011). Therefore, attempting to predict
a biofilm’s behavior is a challenging task. Based on their
needs, biofilm-resident microbes can tune and adapt their
production of biofilm building blocks (Guo et al. 2021;
Zheng et al. 2024). The sum of these components is known
as extracellular polymeric substances (EPS) or matrix, and
the building blocks are exopolysaccharides, proteins and
nucleic acids (Lu et al. 2024). Depending on the environ-
ment, these EPS can trap debris or react with minerals and
reinforce further the scaffold turning the soft biomass into
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hard matter such as stromatolites or dental calculus (Jin and
Yip 2002; Paerl et al. 2001). In a man-made environment,
microbial biomass build-up and enhanced corrosion caused
by biofilms represent an expensive technical issue (Coetser
and Cloete 2005; Flemming 2002; Xu et al. 2023) Due to all
this, in industry and the medical sector serious efforts are in
place to limit biofilm formation as much as possible. When
such microbial communities form on a surface or inside an
equipment, they become a continuous source of contami-
nation, spoilage and infections. Unwanted biofilms have a
significant worldwide economical and medical impact, esti-
mated to 3,967 billion dollars (Camara et al. 2022).
Research in biofilm control strategies is very active and
inventive, however, so are microbes. Thanks to their high
ability to adapt and evolve, microbes often overcome chal-
lenges imposed by antifouling strategies (Cholley et al.
2020; Han et al. 2019; Oliveira et al. 2023). Moreover, it
was demonstrated that biofilms promote the emergence of
antibiotic-resistant mutants (Driffield et al. 2008; France
et al. 2019; Frapwell et al. 2018). The state of the art in
antibiofilm strategies in the industry and medical sector
has recently been reviewed. Dawan et al. (2025) detailed
the latest advancements in biofilm control technologies for
the food industry. Thomas and Thomas (2021) reviewed the
current strategies in medical settings and identified emerg-
ing approaches with clinical relevance. These strategies
can be categorized into physical, chemical and biological
methods, and included techniques such as heat, ultrasound,
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electric current, antimicrobial metals, hydrogels, antiseptic
solutions, small molecules and bacteriophages (Dawan and
Zhang 2025; Thomas and Thomas 2021).

To tackle biofilm adaptation to antimicrobial treatments,
researchers are increasingly investigating combined antimi-
crobial methods, including the association of chemical and
physical methods. In this context, techniques such as ultra-
sounds, plasma, ionizing and non-ionizing radiation were
investigated in combination with antibiotics, disinfectants,
oxidants, antimicrobial molecules and nanoparticles (Bang
et al. 2017; Barra et al. 2015; Huang et al. 2020; Jung et
al. 2018a; Park et al. 2018; Petrini et al. 2022; Shabani et
al. 2023; Teirlinck et al. 2018). The association of physi-
cal and chemical techniques offers more options and several
advantages such as decreasing the concentration of antibiot-
ics or antimicrobials usually required for a single chemi-
cal treatment or decreasing the required radiation dose and
sterilization time. Combined approaches allow tailoring the
anti-microbial strategy to the specificities of the targeted
microbial community and adjusting the protocol to the
treated environment (patient, sensitive equipment, products
under strict regulations).

Combining treatments in order to control unwanted cell
proliferation is a common practice in fields such as oncol-
ogy. In fact, despite their unrelated origins there is a remark-
able resemblance between biofilms and solid tumors. Both
represent organized multicellular structures dynamically
evolving in their microenvironment. They are also charac-
terized by cell heterogeneity and an increased resistance to
chemical and radiation treatment. In the case of tumors, to
overcome the resistance of some cancerous cells to treat-
ments, radiosensitizing agents are being used to maxi-
mize the effects of radiotherapy (Wang et al. 2018). These
radiosensitizers enhance the sensitivity of cells to radiation
therapy. They have been categorized in detail based on their
biological effect or chemical/biochemical class (Rashidza-
deh et al. 2022; Wardman 2007). Depending on the com-
pound, mechanisms of action may involve the interference
with cell integrity, repair mechanisms and homeostasis, the
induction of reactive oxygen species (ROS) or the increase
in DNA damage. Hence, it is tempting to suggest that radio-
sensitizing strategies could also improve the outcomes of
antimicrobial irradiation protocols. However, for a broad
application such strategies should be based on biocompat-
ible radiosensitizers that are effective against unwanted
microbial proliferation as well as safe for large-scale use
in industry and for the environment. Several studies inves-
tigated plants extracts for their radiosensitizing properties.
For example, carvacrol, thymol and trans-cinnamaldehyde
radiosensitized Escherichia coli O157:H7 and Salmonella
Typhi in contaminated ground beef (Borsa et al. 2004).
Coatings containing carvacrol radiosensitized E. coli ATCC

25,922 and Salmonella Typhimurium (Severino et al.
2015). Methylcellulose-based coatings containing mixtures
of organic acids and citrus extract were found to enhance
the sensitivity of E. coli to y-radiation (Takala et al. 2011).
Thyme and oregano essential oils increased the radiosen-
sitivity of Aspergillus niger, Bacillus cereus and Paeniba-
cillus amylolyticus inoculated to rice grain (Shankar et al.
2020). It was suggested that disruption of the intracellular
ATP concentration and cell wall composition caused the
radiosensitizing effect of oregano essential oil (Shareck and
Lacroix 2009). In these studies, the impact of such treat-
ments on biofilms was not reported. Only experiments
reported by Borsa et al. (2004) and Severino et al. (2015)
provided conditions for substantial biofilm development
although this was not specifically discussed by the authors.
Although organic radiosensitizers show promising results,
their broad application is challenged by their reactivity,
allergenic risk (Sarkic and Stappen 2018), storage require-
ments and overall availability.

Inorganic compounds are more available on the market
than essential oils and plant extracts because of differences
in supply chains, production capacity and economic demand.
They are also more stable and less sensitive to environmen-
tal conditions. In the following sections, we will focus on
inorganic radiosensitizers, especially oxidizing agents and
elements with high atomic number and their nanoparticles.
The current state of the art in inorganic radiosensitization of
microbial cells and biofilms will be described, in addition to
general mechanisms behind radiosensitization.

Biofilms and ionizing radiations

Biofilms represent a more complex biological structure
compared to planktonic bacterial cells. They are signifi-
cantly richer in extracellular polymeric substances than lig-
uid cultures and have different transcriptomic and proteomic
profiles than their planktonic counterparts (Charlebois et al.
2016; Kives et al. 2006; Resch et al. 2005; Svensiter et al.
2001; Zhang et al. 2007). It was shown that EPS such as
alginate and secreted enzymes had a protective role against
electromagnetic radiation such as UVA (Pezzoni et al. 2014,
2022). Culture density and configuration (aggregates) also
interfered with the antimicrobial action of UVC radiation
by improving significantly cell survival (Garcés et al. 2021;
Labadie et al. 2024). Biofilm resident cells of Deinococcus
geothermalis had improved cell culturability compared to
planktonic cells after a 16-month exposure to space vacuum
and radiations (Panitz et al. 2019). Bacterial biofilms could
grow in the radioactive water of a spent nuclear fuel pool.
These bacteria exposed to 2,030 Bg/cm? could also entrap
radionuclides, especially ®°Co (Sarr6 et al. 2007). Mixed
biofilms formed on the cladding of nuclear spent fuel rods
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and survived for 64 days in high-radiation fields (2.1 Gy/h)
(Bruhn et al. 2009). A recent study demonstrated that mixed
biofilms developed on the walls of a nuclear reactor pool,
in metal-contaminated water and at just 2 m distance from
the core. Bacillus flexus isolated from these biofilms could
tolerate 15 kGy of gamma and neutron radiation (Bratkic et
al. 2024).

On the other hand, a series of experiments on pathogens
such as E. coli O157:H7, Listeria spp. and Salmonella spp.,
showed that ionizing radiations doses between 1.5 and
2.5 kGy could significantly reduce the biofilm’s cell popula-
tion and the sessile communities were not necessarily more
resistant to gamma rays than free-floating bacteria (Niemira
2007, 2010; Niemira and Solomon 2005). The same team
described similar observations in a study on Pseudomonas
Sfluorescens exposed to X-rays (Olanya et al. 2015). How-
ever, for the moment these are the sole comparative studies
on the radiation sensitivity of planktonic bacterial cells and
biofilms.

Mechanisms of radiosensitization by oxidants and
applications in biofilm mitigation

Oxidants such as hydrogen peroxide H,0,, ozone O, (Kom-
anapalli and Lau 1996; Ramseier et al. 2011), chlorine
dioxide CIO, (Han et al. 2001, 2017) or sodium hypochlo-
rite NaOCl (Han et al. 2016; Panasenko et al. 1995) can
cause lipid peroxidation and therefore weaken and desta-
bilize biological membranes (Clark et al. 1969; Janero et
al. 1991; Linley et al. 2012; Sheridan et al. 1996). They are
also involved in the production of ROS that disturb general
homeostasis and key cellular components such as proteins
and DNA (Andrés Juan et al. 2021). Damage caused by
oxidizing agents adds up to the damage caused by ionizing
radiation and overwhelm cellular repair mechanisms result-
ing in cell death. A recent study demonstrated that the use of
H,O, preparations as radiosensitizer improved the outcomes
of the radiation treatment in cancer patients significantly
(Usui and Saito 2024). While the effectiveness of H20- as
a radiosensitizer in cancer treatment has been proved, simi-
lar strategies were explored for biofilm control. Researchers
have used sodium hypochlorite to improve the antimicro-
bial effect of an X-ray treatment against Salmonella enterica
Typhimurium biofilms attached to eggshell (average biofilm
cell population was 7.7+0.1 log CFU/egg) and showed that
the combined protocol could induce nearly two times more
cell reduction than a single treatment of X-rays (2.7+0.06
log CFU/egg) or NaOCl (2.2+0.11 log CFU/egg) (Jung et
al. 2018a). In a similar setup using X-rays and ClO,, the
combined approach resulted in enhanced reduction of cell
viability (4.7+0.15 log CFU/egg) compared to irradiation
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or CIO, alone (2.5+0.07 log CFU/egg and 1.4+0.08 log
CFU/egg respectively) (Park et al. 2018).

Mechanisms of radiosensitization by high atomic
number elements and antimicrobial applications

Heavy elements are being intensively investigated as radio-
sensitizers and they showed promising results against
uncontrolled proliferation of eukaryotic cells. When pres-
ent in a biological environment, elements with high atomic
number such as Au (Z=79), Pt (Z=78), Gd (Z=64) or Ag
(Z=47) have numerous possibilities for interactions. They
can engage with the biological components (Glisi¢ et al.
2012; Kanellis and dos Remedios 2018), be involved in
chemical reactions, or react with photons during radiation
exposure (Kobayashi et al. 2010; Leung et al. 2011; Wang
et al. 1996). Hence, the introduction of these elements in
the proximity of living cells can have biological, chemical
and physical consequences. The biological consequences
consist for example in protein binding, enzyme inactiva-
tion (Che and Siu 2010; Vréek and Sinko 2013), membrane
damage and the induction of oxidative stress (Jiravova et
al. 2016; Paesa et al. 2023; Rohde et al. 2021). Moreover,
heavy elements have often dense atoms and larger cross-
sections than lighter elements, which promotes the probabil-
ity for interactions with X-rays or gamma (y) rays photons
(Ebel et al. 2003; Seibert and Boone 2005). Depending on
the energy of the incoming radiation colliding with matter,
three scenarios that can partially overlap are possible: a pho-
toelectric interaction, a Compton scattering or a pair pro-
duction (Ragheb 2008). In our context, we will focus on the
photoelectric effect and the Compton scattering as the pair
production phenomenon happens at very high energy ranges
rarely relevant for biological applications. To comprehend
the mechanism of radiosensitization by high Z elements it is
important to understand their interactions with high-energy
electromagnetic radiations (Fig. 1). An X-ray or a y-ray is a
shower of photons with a spectrum of energies characteristic
of the source, it is known that within certain energy ranges
different types of interaction will dominate. For example, at
radiation energies in the eV and keV range, the interaction of
high Z elements with these photons results mainly in a pho-
toelectric effect. This is a situation where the incoming pho-
ton has the required energy to act on an inner shell electron
of the dense atom. The photon is then completely absorbed,
and its energy transferred to the electron drives this latter
out of its orbit, ionizing the atom. The ejected electron is
known as a photoelectron. To fill in the vacancy left by the
photoelectron, another electron from an outer shell of the
atom transits back to the empty spot and is required to lose
energy (equal to the difference in energies between the two
shells) either in the form of a photon (secondary radiation)
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Fig. 1 Schematic illustration of the effect of ionizing radiation on the electrons of an atom. The outcomes of the Compton scattering and photo-

electric effect are shown

or the release of a highly reactive Auger electron. The prob-
ability of a photoelectric effect happening is directly related
to the atomic number (Z) of the irradiated material and the
energy level (E). On the other hand, the Compton Effect
or Compton scattering happens in all energy ranges in all
materials, dominating from keV to MeV. Although Comp-
ton scattering is also reported to possibly affect inner-shell
electrons in certain conditions (Stutz 2014), it is commonly
accepted that Compton effect interactions with loosely
bound outer shell electrons and free electrons are more
probable due to their availability and low binding energies.
In this situation, a photon collides with a weakly bound
electron and the latter is ejected. However, the photon is
not absorbed but scattered as only a portion of its energy is
transferred to the electron. Compton scattering also results
in an ionized atom and the ejected electron and scattered
photon will cause further interactions in their surroundings.
Although the Compton scattering is independent of the ele-
ment’s atomic number, it is affected by the electron density
of the matter and a Compton effect will be more important
in metals than in biological material (Ragheb 2008; Seib-
ert and Boone 2005). Together, photoelectrons, secondary
radiations and Auger electrons from the photoelectric inter-
actions, and scattered electrons from the Compton Effect are
responsible for the dose enhancement and related biological
damages. In both cases, the presence of high Z elements
in biological media allows for a higher energy deposition.
These physical phenomena play a crucial role in the medical
field, especially in radiology and radiotherapy (Kobayashi
et al. 2010; Lusic and Grinstaff 2013; Seibert and Boone
2005; Thariat et al. 2013). In microbiology, radiosensitiza-
tion by high Z elements has been investigated in bacterial
cells and spores. In early experiments, researchers observed
that iodine (Z=53) containing compounds had a significant

radiosensitizing effect on bacterial cells exposed to y-rays.
Iodine being the common factor between these compounds,
it was suggested that this element may be responsible for
the increased efficacy of the radiation treatment (Kada
1970; Kada et al. 1970; Lewis and Kumta 1975). Later on,
the radiosensitizing properties of safer forms of iodine-
based compounds were demonstrated in vitro and in vivo
(Tamura et al. 2017). Ionic forms of copper, zinc and silver
also improved the antimicrobial effect of radiation exposure
for E. coli K12, and Bacillus megaterium cells and spores
(Kiortsis 1977; Richmond and Powers 1974; Selvaraj et al.
2007).

Next, research on high Z elements as radiosensitizing
agents transitioned from soluble complexes to microspheres
(Herold et al. 2000), to nanoparticles (NPs) (Hainfeld et al.
2010; Simon-Deckers et al. 2008). Thanks to their nanomet-
ric dimensions, NPs have greater surface area than micro-
spheres and crystals. This implies that a larger proportion
of their atoms are exposed on the surface and available for
physical and chemical interactions. The capacity of nanoma-
terials in improving the antimicrobial action of X-rays has
already been explored. For instance, gold NPs (=37.5 nm;
3 mg/mL) increased the reduction of E. coli K-12 cell viabil-
ity by 40% compared with X-rays (312 Gy) alone (Simon-
Deckers et al. 2008). Flynn et al. (2021) showed that addition
of of AuNPs (1.8 nm; 10 pL/mL) to liquid cultures of E. coli
slightly improved cell reduction compared to only radiation
(10 Gy of X-rays). However, surviving bacteria gradually
recovered and by 9 h after irradiation the culture resumed
normal growth (Flynn et al. 2021). Microcystis aeruginosa
incubated with gold-titanium oxide nanocomposites (Au/
TiO2; 0.2 mg/mL) prior to irradiation (6 kGy of X-rays)
showed morphological deformation, loss of cellular content
and a decrease in chlorophyll production (Molina Higgins
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and Rojas 2019). Luo et al. (2013) studied bismuth (Z=83)
NPs grafted with polyclonal antibodies to specifically sensi-
tize Pseudomonas aeruginosa to X-rays. Furthermore, they
mimicked deep wounds infections by evaluating the efficacy
behind a 2-cm thick polymeric material. They demonstrated
that although the polymeric surface absorbed X-rays at a
significant dose rate (14.9 mSv/min), bacteria still received
5.1 mSv/min. After 10 min of exposure, bacteria accumu-
lated 51 mSyv, the equivalent of 0.051 Gy. This dose was
sufficient to demonstrate the radiosensitizing potential of
bismuth NPs (0.2 mg/mL) as it caused a similar cell reduc-
tion as 600 min of radiation exposure (=3.06 Gy) (Luo et
al. 2013). Bismuth for the radiosensitization of P. aerugi-
nosa was also used as nanofilms (10 nm) deposited through
evaporation on the surface of petri dishes. After inoculation,
samples were exposed to 2.5 Gy of X-rays and an enhanced
cell killing for the combined treatment (87%) compared to
the radiation treatment alone (42%) was observed (An et
al. 2015). Crystals of lanthanum (Z=57) orthophosphate
doped with praseodymium (Z=59) (LaPO,:Pr*") were used
to coat borosilicate glass petri dishes (unreported thickness)
and inoculation with 3 mL of E. coli suspension and subse-
quent exposure to =75 Gy of X-rays resulted in at least 1.5
more log cell reduction than X-rays alone (Johnson et al.
2016). Finally, nanoparticles based on zinc (Z=30) and iron
(Z=26) in the form of ZnFe,O, (11.85 to 22.63 nm; 1 mg/
mL) enhanced E. coli cell reduction by radiation (2 Gy of
X-rays) by about 6.3% (Hidayatullah et al. 2016).

Knowledge gaps

Based on the state of the art, several knowledge gaps regard-
ing the inorganic radiosensitization of bacteria were identi-
fied. Despite their low cost, studies on the radiosensitizing
properties of inorganic oxidants against bacteria is still
scarce. This is potentially due to their corrosive nature that
may discourage industrial applications. Sterilization proce-
dures with ionizing radiation are expensive and energy con-
suming, oxidants used as radiosensitizers can help decrease
costs by reducing the required dose and treatment time.
More research could help enhancing their efficiency while
minimizing corrosive effects and enabling safer and more
cost-effective sterilization methods. On the other hand,
high Z elements are currently a hot topic in radiotherapy
research, however, the exploration of their potential in a
microbiological context is limited and optimal radiosensi-
tizing conditions have not been determined. Based on the
reviewed studies, radiosensitizing agents were generally
tested on one bacterial species with most experiments per-
formed on E.coli and P. aeruginosa. Yet, it is known that
bacterial sensitivity to metals (Sazykin et al. 2023) and to
radiation (Munir and Federighi 2020) differs from species
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to species, and even strain to strain. Expanding research to
cover a wider array of bacteria is critical for understanding
the broader applicability of high-Z radiosensitizers in anti-
microbial treatments. Au-derived nanomaterials were the
most investigated. Silver and silver nanomaterials are used
as antimicrobial agents, oxidative stress inducers (Domin-
guez et al. 2020) and radiosensitizers (Liu et al. 2016),
yet they were not explored for the sensitization of bacteria
except for Ag,SO, in the study by Richmond and Powers
(1974).

Silver is an expensive metal (= $1000/kg), still its remark-
able antimicrobial properties have led to its widespread use.
Gold, however, costs nearly ten times more, which may
limit its application as a radiosensitizer in large-scale set-
tings. Other radiosensitizing elements like manganese, iron
and zinc are much more affordable and accessible, making
them good candidates for a broad range of applications,
including medical therapies, environmental remediation and
industrial processes, where cost-effectiveness is essential.

In the reviewed studies (summarized in Table 1), inor-
ganic radiosensitizers were used either pre- (Lewis and
Kumta 1975; Richmond and Powers 1974; Simon-Deckers
et al. 2008), during- (An et al. 2015; Flynn et al. 2021,
Hidayatullah et al. 2016; Johnson et al. 2016; Kada 1970;
Kiortsis 1977; Luo et al. 2013; Molina Higgins and Rojas
2019; Selvaraj et al. 2007) or post-irradiation (Jung et al.
2018b; Park et al. 2018). This implies that bacterial cells
experience the cumulative stress differently in each of these
scenarios. Pre-treatment could give the radiosensitizer time
to act on cell membranes and DNA, however, consider-
ing the rapid multiplication of many microorganisms this
may give them the opportunity to adapt or activate repair
mechanisms. During irradiation, bacteria experience both
stressors in parallel. The latter has been shown to be more
effective than pretreatment in the case of the radiosensiti-
zation of Bacillus megaterium by zinc (Kiortsis 1977). For
post-irradiation, the successive stress exposure is supposed
to overwhelm the bacterial repair mechanisms in cells sur-
viving the first treatment leading to improved antimicrobial
outcomes. Thus, depending on the radiosensitization proto-
col, the sequence of events that follow at the cellular level
can vary significantly.

We also noticed that the scientific approach was gener-
ally focused on the behavior of the radiosensitizer and the
growth kinetics of the exposed microorganisms. Several
studies also used microscopic methods to observe the direct
effects on cells such as the impact of bismuth coating and
nanoparticles coupled to X-rays on P. aeruginosa. The red
fluorescence from the LIVE/DEAD staining observed by
fluorescence microscopy provided evidence for membrane
damage or dysfunction in cells exposed to the combined
treatment while cells exposed to a single treatment were
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Table 1 Summary of published Source  Radiosensitizer Microorganism  Dose Result of the combined Reference
experiments on the radiosensi- treatment
tization of bacteria using hlgh.Z 37Cs lodoacetic acid (1 E. coli K12 ~153.6 Gy No cell survival (Kada
elements sorted by chronological
order (v) mM) 1970)
137Cs Potassium iodide,  Bacillus subtilis 6.7 Gy Less than 2.5% cell (Kada et
) Potassium iodate Marbourg survival al. 1970)
or iodoacetic zcid
(1mM)
Gamma lodoacetamide (1 Micrococcus 8 uGy 5-log cell reduction (Lewis
cell 220 mM) radiophilu and Kumta
1975)
X-rays  Ag,S0,(0.01 mM) Spores of Bacil- 0.5 Gy >3-log cell reduction (Richmond
lus megaterium and Pow-
(ATCC 8245) ers 1974)
%Co (y) ZnCl, (0.069 mM)  Bacillus megate- 225 Gy 2-log cell reduction (Kiortsis
rium Elstre 1977)
®Co (y) CuSO, (0.03 mM)  E. coli K12 strain 29 Gy Five times more cell killing (Selvaraj et
AB 4401 than radiation alone. al. 2007)
X-rays  Gold nanoparticles E. coli K-12 321 Gy Nearly 40% of reduction (Simon-
(AuNPs) (3 mg/mL) in viability compared to Deckers et
X-rays alone al. 2008)
X-rays  Polyclonal antibody P. aeruginosa ~0.051 Gy 90% reduction in cell (Luo et al.
modified bismuth survival 2013)
nanoparticles
(0.2 mg/mL)
X-rays 10 nm thick bis- P. aeruginosa 2.5 Gy 45% more cell killing than  (An et al.
muth film X-rays alone 2015)
X-rays  ZnFe,O, (1 mg/mL) E. coli 2 Gy Increased absorbed dose in  (Hidayatul-
nanoparticles the presence of the NPs lah et al.
2016)
X-rays  Thin layer of E. coli (ATCC =75 Gy 2 log reduction by the (Johnson et
LaPO4:Pr3* coating 8739) double treatment compared al. 2016)
to 0.5 log reduction by
X-rays alone
X-rays  Au/TiO2 nanocom- Microcystis 6 kGy Morphological defor- (Molina
posite (0.2 mg/mL) aeruginosa mation, loss of cellular Higgins
content and decrease in and Rojas
chlorophyll production 2019)
X-rays  AuNPs (0.01 mg/  E. coli 10 Gy Slightly higher inhibition  (Flynn et
mL) of growth compared to al. 2021)

radiation alone, followed
by the recovery of the
culture after 4 h.

mainly green implying unaltered membranes (An et al.
2015; Luo et al. 2013). Thus, a dual treatment with radio-
sensitizers and ionizing radiation seems to interfere more
efficiently with the stability of the bacterial membrane. Still,
it is not clear if this is due to a direct damage of the mem-
brane components (lipid bilayer, membrane proteins) or to
a cascade of events leading to the disruption of its function.
Although two studies (Kada et al. 1970; Selvaraj et al. 2007)
examined the impact of dual treatments on DNA, the molec-
ular pathways underlying bacterial death or survival were
not explored. Molecular data that could uncover how such
simultaneous chemical and physical stress affect gene and
protein expression in microorganisms are currently lacking.

We additionally note that the increasing accessibility of
X-ray equipment had an impact on the choice of radiation

sources used for research. In fact, X-ray irradiators are get-
ting compact and convenient. Today’s models are portable
and can fit on a bench. They do not produce radioactive
waste and are subject to fewer regulations compared to
gamma ray sources.

Finally, the investigations cited in Table 1 focused mainly
on the radiosensitization of bacterial suspensions. However,
in medical and industrial settings bacteria are often encoun-
tered as biofilms. Despite the proven potential of high Z
elements for the radiosensitization of bacterial suspensions,
to date no studies specifically addressed the application of
such radiosensitizers in conjunction with X-rays or gamma
rays to combat biofilms. Here, we aimed to expose this
research gap. If heavy-element radiosensitization remains
consistent in biofilms and a significant fraction of these
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Fig.2 Expected interactions between ionizing radiation and heavy elements in a biofilm: the release of reactive electrons (e-) and secondary radia-

tions (y)

elements or derived materials diffuses within biofilms, ion-
ization of bacterial molecules via Compton scattering and
the photoelectric effect should induce significant damage,
even in bacteria embedded in deep biofilm layers (Fig. 2).
Additionally, beyond their interaction with radiation, high Z
elements such as silver and copper may independently inter-
fere with microbial processes enhancing their antibiofilm
potential. Therefore, further exploration is recommended to
develop new effective disinfection options in medical and
industrial settings.

Concluding remarks

Although the exploration of inorganic radiosensitizers in
cancer research has gained significant traction, the applica-
tion of these radiosensitizers to bacterial cells poses intrigu-
ing questions about the fundamental differences in cellular
responses between prokaryotic and eukaryotic organisms.
Bacterial membranes, primarily composed of phospholip-
ids, lack the sterols found in eukaryotic cells, which may
influence how these organisms interact with radiosensi-
tizers. Additionally, the absence of organelles in bacteria
results in a more straightforward biochemical landscape,
possibly leading to distinct pathways for radiation-induced
damage and repair. Molecular biology techniques, such as
transcriptomics and proteomics, can help to elucidate the
specific genes and proteins that mediate bacterial responses
to these agents. Additionally, studying bacterial response to
radiation and radiosensitizers is central for optimizing treat-
ment strategies and combating antibiotic resistance. Lastly,
despite the prevalence of biofilms in medical and industrial

@ Springer

settings, inorganic radiosensitization methods have rarely
been explored for biofilm control. Investigating the poten-
tial of such procedures against biofilms could answer funda-
mental questions about microbial resilience and adaptation
while improving disinfection methods.
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